School of Information Engineering China University of Geosciences (Beijing)

Energy-Aware Composition for Wireless Sensor Networks as a Service

Motivation: Service-Oriented Wireless Sensor Networks

Applications and Requirements

- Dynamic and pervasive environment (Wireless sensor network)
 - healthcare, military surveillance, planetary exploration ...
- -Complexity and coarse-granularity
- Collective fashion
 - Collaboration of multiple neighboring sensor nodes
- Applications demanding robustness and reliability
 - Spatial-temporal-constraint, energy-efficiency, mobility ...

Service-oriented paradigm is promising

- "IoT resources can be encapsulated as IoT-based services, leveraging Device Profile for Web Services, to accomplish complex task" (S. N. Han, IEEE Internet Computing, 2015)
- Current approaches mainly examine the framework for the management and monitoring of IoTresources composition, whereas the composition of IoT-based services is not explored extensively.

Motivation: Service-Oriented Wireless Sensor Networks

IoT-based Service / WSN Service

The functional composition of heterogeneous sensor nodes is a pressing and promising alternative, where the functionality of sensor nodes is encapsulated and represented as a **WSN service**.

Motivation: Service-Oriented Wireless Sensor Networks

IoT-Resource / WSN-Service Composition

Connection-awareness and network-lifetime consideration should be important for the composition of WSN services, which has not been examined extensively at this moment, and should be further explored.

Research Challenges

Context of WSN services

- Core properties for WSN services
 - Spatial and temporal awareness, and energy efficiency.
- Current approaches
 - Framework for the management and monitoring of IoT-resources
- Challenges
 - Service composition while considering properties of WSNaaS.

Approach Overview

Three-Tier Service-Oriented Framework

- **Physical Layer**: sensors, phones, and other type of physical devices encapsulated and represented as **WSN services**.
- Virtual Layer: WSN services are categorized into service classes according to their functionalities.
- Application Layer: service classes are chained to fulfill the requirement of domain applications.

Service Classes Chaining and Recommendation

Service Network Construction	
- Directed graph	
\sqrt{Name}	
✓ Description	
✓ Operation	
operation	
Android Phone Sensors	

Table	Table 3: Sample service classes corresponding to sensor types specified at https:		
//deve	/developer.android.com/guide/topics/sensors/sensors_overview.html.		
Id	$sev_{cl}.nm$	$sev_{cl}.dsc$	
S1	Ambient tempera-	Measures the ambient room temperature in degrees Celsius	
	ture sensing service	(°C). Common use is for monitoring air temperatures.	
S2	Temperature sens-	Measures the temperature of the device in degrees Cel-	
	ing service	sius (°C). This sensor implementation varies across devices.	
		Common use is for monitoring temperatures.	
~ S3	Relative humidity	Measures the relative ambient humidity in percent $(\%)$.	
	sensing service	Common use is for monitoring dewpoint, absolute, and rel-	
- 64	T . 1.	ative humidity.	
54	Light sensing ser-	Measures the ambient light level (illumination) in IX. Com-	
	vice	mon use is for controlling a light, and adjusting its bright-	
	Drogguro gonging	Measures the embient air pressure in hDe or mher. Com	
50	r ressure sensing	measures the ambient air pressure in nra or moar. Com-	
86	Cravity sonsing sor-	Measures the force of gravity in m/s^2 that is applied to a	
50	vice	device on all three physical axes (x, y, z) . Common use is	
	vice	for motion detection (vibration, wobble, etc.).	
S7	Magnetic field sens-	Measures the ambient geomagnetic field for all three phys-	
	ing service	ical axes (x, y, z) in μ T. Common use is for creating a	
	0	compass.	
S8	Proximity sensing	Measures the proximity of an object relative to the view	
	service	screen of a device. This sensor is typically used to determine	
		whether a person is enough closely near the device.	
S9	Ambient smog	Measures the ambient room smog in degrees mg/L. Com-	
	sensing service	mon use is for monitoring air smog, and fire alarm.	
S10	Wind direction	Measures the wind direction. Common use is for monitoring	
	sensing service	the wind direction when there are something spread along	
	***. 1	the wind.	
S11	Wind power sens-	Measures the wind power. Common use is for monitoring	
010	ing service	the wind power in a weather application.	
512	Accelerometer sens-	Measures the acceleration force in m/s2 that is applied to	
	ing service	a device on all three physical axes (x, y, and z), including the force of gravity	
->12	Rotation vector	Measures the orientation of a device by providing the three	
-515	sensing service	elements of the device's rotation vector	
S14	Gyroscope sensing	Measures a device's rate of rotation in rad/s around each	
514	service	of the three physical axes (x, y, and z).	
	Service	or the time physical axes (x, y, and z).	

Service Classes Chaining and Recommendation

Service Network Construction

- Directed graph
 - I. Vertex: Service Classes.
 - II. Edge: direct links
 - ✓ Invocation relationship between service classes.
 - III. Weight: invocation possibility between service classes✓ Degree of similarity of the *names*
 - Minimum cost and maximum flow algorithm
 - ✓ Degree of similarity of the *descriptions*
 - xsimilarity
 - \checkmark Invocation possibility of the **operations**
 - Name/description similarity of the parameters

Refer to : Z. Zhou et al, A Sub-Chain Ranking and Recommendation Mechanism for Facilitating Geospatial Web Service Composition. Int. J. Web Service Res. 11(3): 52-75 (2014)

Service Classes Chaining and Recommendation

Service Classes Chains Discovery and Recommendation

Starting state: "Gathers data from multiple sensor nodes in a wireless sensor network, which may include temperature, humidity, wind direction, wind power, ambient smog, light, accelerometer, and other sensors commonly used for monitoring fire alarm, and so on. Public reports to generate the accurate current location of the fire in the firehouse." **Ending state**: "According to the gathered data from corresponding sensors, such as temperature, humidity, ambient smog, wind direction, wind power, light sensors and so on, to generate the current fire region and forecasts of fire spreading in the following time duration. Properly identify the incident, raise the occupant alarm, and then notify emergency response professionals timely."

\Leftrightarrow Service Classes Chain

A sequence of service classes for supporting certain application.

Example service classes chain:

- S4 (light sensing service) \rightarrow
- S1 (ambient temperature sensing service) →
- S3 (relative humidity sensing service) →
- S6 (gravity sensing service)→
- **S10** (wind direction sensing service).
- Step 1 : Finding starting and ending states.
 - (description similarity and invocation possibility)
- Step 2 : Searching candidate service classes chains.

(depth-first graph search algorithm)

Constraints on WSN Services Composition

WSN Services Composition

- A sequence of WSN services, corresponding to certain service classes chain, for supporting certain applications.
 - ✓ Name
 - ✓ Description
 - ✓ Operation
 - ✓ Remaining energy
- ✓ Spatial constraint
- ✓ Temporal constraint ► ·

I Temporal Constraint:

Based on the overlap between time durations of the request *rq* and a certain WSN service *sev*, i.e., *tpr(rq)* and *tpr(sev)*:

 $tpr_r(sev,rq) = (tpr(rq) \cap tpr(sev)) \div tpr(rq)$

Spatial Constraint:

Based on the overlap between geographical region of the request rq and a certain WSN service sev, i.e., spt(rq) and spt(sev):

 $spt_r(sev, rq) = (spt(rq) \cap spt(sev)) \div spt(rq)$

Energy Consumption: Activation cost of instantiating WSN services

 $E_{inv}(comp(chn)) = f_i \times E_{inv}(sev_i)$

Communication cost between WSN services

 $E_{com}(comp(chn)) = (leg(comp(chn)) - 1) \times (E_{Tx}(k, d) + E_{Rx}(k))$

Energy Constraint of a Certain WSN Service: Residual energy should be more than required to be consumed:

 $eng(sev_i) \ge E_{cst}(sev_i)$

Residual energy load-balancing: To avoid over-consumption of energy for any WSN service:

$$lbf(sev_i) = (eng(sev_i) - E_{cst}(sev_i)) \div E_{avg}$$

WSN Service Composition

WSN Services Composition

-Formulated as a multi-constrained and multi-objective optimization problem.

Implementation and Evaluation

Service Classes Chains & WSN Services Composition

Sample service classes chain and one of the WSN services compositions generated through applying PSO and GA.

Service classes chain: $S4 \rightarrow S1 \rightarrow S3 \rightarrow S6 \rightarrow S10$ WSN service composition: $338 \rightarrow 35 \rightarrow 32 \rightarrow 60 \rightarrow 112$

Implementation and Evaluation

Experimental Evaluation

Fitness – Different iteration times

Minimum Residual Energy

Fitness – Different execution times

Variance of Residual Energy

Conclusion

IoT-based Service / WSN service

- Services encapsulated from sensor or mobile devices
 - Spatial and temporal constraints
 - Energy awareness

Wireless Sensor Network as a Service

- Service configuration, discovery and composition
 - Construct service network
 - Service classes chaining and recommendation
- -Composition of WSN services
 - Consider constraints of WSN services
 - Formulated as a multi-constrained and multi-objective optimization problem

- Solution

PSO / GA / GWO / Exhausted Algorithm

Future Work

- Domains for service computing community to contribute
 - WSN as a service, Sensing/... as a Service
 - Service composition, reliability, QoS, ...

Future Generation Computer Systems Volume 80, March 2018, Pages 299-310

Energy-aware composition for wireless sensor networks as a service

Zhangbing Zhou ^{a, d} A 🖾, Deng Zhao ^a, Lu Liu ^b, Patrick C.K. Hung ^c

Show more

https://doi.org/10.1016/j.future.2017.02.050

Get rights and content

Highlights

- Propose a three-tier service-oriented framework for WSNs.
- Service classes chains discovery and recommendation is developed.
- Multi-objective and multi-constrained optimization is adopted for WSN services in service classes in chains.